PhD Thesis Title: Design of robotic hand-based intervention with brain stimulation applications for post stroke neurorehabilitation

Author: Neha Singh
Email: nehasingh0407@gmail.com
Institution: Indian Institute of Technology, Delhi, India
Supervisor: Dr. Amit Mehndiratta
Co-Supervisor: Prof. Padma Srivastava, Prof. Sneh Anand
Graduation Date: 04/03/2020
Available Online: No

ABSTRACT:

Robots have the potential to help provide exercise therapy in a repeatable and reproducible manner for stroke survivors. To facilitate rehabilitation of the wrist and fingers, an electromechanical exoskeleton was developed that simultaneously moves the wrist and metacarpophalangeal joints. A Computer Aided Design model of the mechanical linkage was made, simulated for Factor of Safety and fatigue life, 3D printed and assembled. The device was designed for ease of manufacturing and maintenance, and crucial considerations for countries with limited resources. Active participation of the user is ensured by the implementation of electromyographic control and visual feedback of performance. Muscle activity requirements, movement parameters, range of motion, and speed can all be customized to meet the needs of the user. Twenty-three stroke survivors, ranging from the subacute to chronic phases of recovery (mean 10.6 months poststroke), successfully participated in a randomized controlled study with two groups: the Robotic therapy (n=12) and the Control group (n=11). In the robotic therapy group, participants completed 20 sessions, each lasting 45 minutes. Twenty sessions of 45 minutes of physiotherapy were given to patients in the control group. In robotic therapy group, patients exhibited statistically significant changes (p < 0.05) in the clinical outcome measures (Fugl-Meyer Stroke Assessment score for the upper arm, Barthel Index, active range of wrist motion and Modified Ashworth Scale) than the control group following the treatment. Cortical excitability, amplitude of Motor Evoked Potential and Resting Motor Threshold, was observed to be increased post-therapy in the robotic therapy group than the control group (p < 0.05). Thus, this device shows promise for improving rehabilitation outcomes, especially for patients in countries with limited resources. The device has been synchronized with brain stimulation for evoking activity-dependent stimulation. Hardware has been developed, protocol optimized with Transcranial Magnetic Stimulation, and tested on four patients completing 20 sessions with promising results.

References to author publications that relate specifically to the dissertation:


Patents Published:


Patents Filed:


Copyright: